


EECS 562
Homework 7

1. A DSB-LC signal can be defined as $y_{RF}(t) = A_c(1 + k_a x_{bb}(t)) \cos(2\pi f_c t)$. k_a is the amplitude sensitivity of the modulator. For a message signal of $x_{bb}(t) = 2 \cos(2\pi f_m t)$ volts where $f_m = 25$ Hz and the unmodulated RF signal of is $100 \cos(2\pi f_c t)$ volts where $f_c = 1$ kHz and a the percent modulation (sometimes called modulation index or modulation factor) of 75%, 100%, 125% answer the following questions.
 - Find A_c and k_a .
 - Plot the RF signal in the time domain to scale.
 - What is the total RF transmitted power for a modulation index=1, assume a 1 ohm load.
 - What is the power in the carrier wave modulation index=1, assume a 1 ohm load.
 - What is the RF bandwidth?
 - Plot the one-sided power spectral density of the RF signal modulation index=1.
 - What is the impact of overmodulation, e.g., a modulation index of 125%, on the RF signal in the time domain?
2. For a sequence of information bits $b_i = \{1,1,0,0,1,0\}$; $i=1..6$, the message signal is formed as

$$m(t) = \sum_{i=1}^6 b_i \text{rect}(t - (i-1) - 0.5)$$
 - Plot $m(t)$
 - For 50% AM percent modulation plot the RF time-domain signal (use $f_c = 10$ Hz)
 - For 100% AM percent modulation plot the RF time-domain signal (use $f_c = 10$ Hz)
 - Can an envelope detector be used to recover the transmitted bits?
3. Let $s(t)$ be an DSB-LC (AM) signal. The unmodulated transmitted power is 150 KW. The message signal is $x_{bb}(t) = \cos(2\pi f_m t)$. The power in the sidebands is 50 KW.
 - Find the corresponding carrier amplitude, A_c
 - What is the modulation factor?
 - What is the power efficiency?
 - What is the RF bandwidth?
4. An DSB-LC RF signals are plotted in the time domain below. What is the modulation index (modulation factor) for each signal?

5. Consider a sequence of information bits $b_i \{ \dots, 0, 1, 0, 1, 0, 1, 0, 1, \dots \}$. That is, alternating 0's and 1's. A baseband analog message signal is formed as where $a_i = -1$ if $b_i = 0$ and $a_i = +1$ if $b_i = 1$. Here the bit rate is 100 bits/sec, $T_b = 10\text{ms}$.

$$x_{bb}(t) = \sum_{k=-\infty}^{\infty} a_i \text{rect}\left(\frac{t-kT_b/2}{T_b}\right)$$

- a. Plot $x_{bb}(t)$.
- b. What is the DC (or average value) of $m(t)$?
- c. Find the Fourier Series of $x_{bb}(t)$ and plot its one sided amplitude spectrum.
- d. DSB-LC (AM) modulation is used to transmit $x_{bb}(t)$ with a unmodulated carrier $100 \cos(2\pi f_c t)$ with $f_c = 10\text{kHz}$. Plot the RF signal in the time domain for 50% AM percent modulation.
- e. DSB-LC (AM) modulation is used to transmit $x_{bb}(t)$ with a unmodulated carrier $100 \cos(2\pi f_c t)$ with $f_c = 10\text{kHz}$. Plot the RF amplitude spectrum for 90% AM percent modulation.

6. Given an information signal of $\cos(2000\pi t)$ and

$$y_{RF}(t) = 40(1+0.75\cos(2000\pi t)) \cos(100000\pi t)$$

- a. Identify the modulation type.
- b. What is the total power in $y_{RF}(t)$?
- c. What is the power in the upper sideband?
- e. Is the power in the lower sideband the same as the power in the upper sideband?
- f. What is the power efficiency.

7. A square-law modulator for generating an DSB-LC signals relies on the use of a nonlinear device (e.g., diode). Ignoring higher order terms, the input-output characteristic of the diode-load resistor circuit is represented by a square law, i.e., $v_{out}(t) = a_1 v_{in}(t) + a_2 v_{in}^2(t)$

- a. With $x_{in}(t) = A \cos(2\pi f_c t) + x_{bb}(t)$ where $x_{bb}(t)$ has a bandwidth B_{bb} . Find $v_{out}(t)$ and identify the terms that represent a DSB-LC signal.
- b. Draw the block diagram of a DSB-LC modulator that uses a square law device as defined in this problem.

8.

- a. Explain why a DC blocking capacitor is required in an envelope detector.
- b. What is the impact of the DC blocking capacitor is required in an envelope detector on the performance of commercial AM radio receivers.